Stonehenge at sunset
Photovoltaic array in Germany, 2007
Solar array on the International Space Station, 2000
  • Spear points from the Clovis phase found in present-day Alberta.<br/>Source: Historical Resources Management Branch, Archaeological Survey

    Clovis phase spear points used in present-day Alberta.

    Clovis phase spear points represent the oldest hunting technology in Alberta, and indeed all of North America. These fluted, jagged stone points would be attached to a bone or wooden shaft and used to hunt enormous prey such as mammoths and mastodons.
    Source: Historical Resources Management Branch, Archaeological Survey

  • Diagram of an atlatl (spear-thrower)<br/>Source: Courtesy of Head-Smashed-In Buffalo Jump

    Atlatl (spear-thrower) technology emerges in present-day Alberta.

    Atlatls were used by early hunter’s to increase the velocity of their projectile weapons. Spears or darts thrown with an atlatl could deliver devastating wounds to an animal, allowing the hunter to kill the animal from a safe distance.
    Source: Courtesy of Head-Smashed-In Buffalo Jump

  • Representation of an early hunter drawing a bow<br/>Source: Courtesy of Head-Smashed-In Buffalo Jump

    Bow and arrow technology reaches present-day Alberta.

    Bow and arrow technology in North America appears to have developed first in the Arctic before spreading south throughout the continent. The bow and arrow was ideally suited for use in the wide open spaces of the Great Plains, and was widely adopted across the region.
    Source: Courtesy of Head-Smashed-In Buffalo Jump

  • Petroglyph of a mounted hunter chasing a bison, Milk River<br/>Source: Royal Alberta Museum

    The ‘Horse Revolution’ begins in present-day Alberta.

    Horses were brought to North America by Spanish colonists in the sixteenth century. From the Spanish colony of New Mexico, horses spread across North America, reaching present-day Alberta in the 1730s. The adoption of the horse had a significant impact on the hunting/transportation patterns of Plains First Nations peoples.
    Source: Royal Alberta Museum

  • Swimmers Enjoying the Banff Hot Springs, ca. 1935<br/>Source: Whyte Museum of the Canadian Rockies, v263-na-3562

    Rocky Mountains National Park is established by the Canadian government.

    One of the main attractions of the new park was the site’s natural hot springs. The luxurious Banff Springs Hotel, built by the Canadian Pacific Railway in 1888, pumped water from the hot springs into its swimming pools and treatment rooms. Tourists flocked to the site to take advantage of the water’s supposed therapeutic healing powers.
    Source: Whyte Museum of the Canadian Rockies, v263-na-3562

  • Calgary Water Power Company hydroelectric plant, n.d.<br/>Source: Glenbow Archives, NA-4477-44

    The Calgary Water Power Company opens Alberta’s first hydroelectric plant.

    The company was owned by entrepreneur Peter Prince, who also ran the Eau Claire & Bow River Lumber Company. From 1894 to 1905, the company was the major electricity provider for the city of Calgary.
    Source: Glenbow Archives, NA-4477-44

  • The city power plant in Edmonton, 1912<br/>Source: Glenbow Archives, NC-6-271

    The City of Edmonton purchases the Edmonton Electric Lighting Company.

    The decision in favour of public ownership was made after repeated disruptions in service from the privately-owned utility. Edmonton was the first major urban centre in Canada to own its own electricity utility.
    Source: Glenbow Archives, NC-6-271

  • Changing the name from Calgary Power to TransAlta, 1981<br/>Source: Photo courtesy of TransAlta

    The Calgary Power Company is formed.

    The founder of the company, Max Aitken, was initially drawn to the region by its vast hydroelectricity potential. The company would develop into Canada’s largest investor-owned utility. In 1981, the company changed its name to TransAlta Utilities Corporation, in order to better reflect its provincial reach.
    Source: Photo courtesy of TransAlta

  • Calgary Power’s power house at Horseshoe Falls on the Bow River, ca. 1912<br/>Source: Glenbow Archives NA-3544-28

    Alberta’s First hydroelectric dam opens at Horseshoe Falls.

    Owned and operated by Calgary Power, the Horseshoe Falls Dam was the first of two such facilities built on the Bow River system prior to the First World War. A second hydroelectric dam began operations at Kananaskis Falls in 1913.
    Source: Glenbow Archives NA-3544-28

  • Ghost Hydroelectric Dam, 1935<br/>Source: Glenbow Archives, NA-5663-44

    The Ghost Hydroelectric Dam begins operations

    This massive facility was the largest hydroelectric dam in Alberta at the time it was built. The Ghost Power Plant more than doubled the amount of electricity generated by Calgary Power, which was already the province’s main energy supplier.
    Source: Glenbow Archives, NA-5663-44

  • Rural electrification crew at work near Irma, 1951<br/>Source: Glenbow Archives, NA-4160-20

    The first Rural Electrification Association (REA) in Alberta is established in Springbank.

    Over the next two decades, a total of 416 REAs would be established across the province. These organizations would play a crucial role in the spread of electricity to rural Alberta.
    Source: Glenbow Archives, NA-4160-20

  • CCF Advertisement in the People’s Weekly, August 14, 1948, urging people to support public utility ownership<br/>Source: Image courtesy of Peel’s Prairie Provinces, a digital initiative of the University of Alberta Libraries

    Voters of Alberta narrowly reject proposal for public ownership of electricity utilities.

    The 1948 provincial election included a plebiscite concerning ownership of electricity utilities in Alberta. Rural areas largely voted in favour of public ownership, while urban voters (particularly in southern Alberta) supported a continuation of private ownership. In the end, the vote was extremely close, with public ownership defeated by a mere 151 votes.
    Source: Image courtesy of Peel’ Prairie Provinces, a digital initiative of the University of Alberta Libraries

  • Five of the turbines installed at Cowley Ridge Wind Farm<br/>Source: Photo courtesy of TransAlta

    Cowley Ridge Wind Farm begins operations near Pincher Creek.

    Cowley Ridge was Canada’s first commercial wind farm. A total of fifty-two wind turbines were installed in 1993-94. In 2000, the project was expanded with the addition of fifteen new (and much more powerful) turbines.
    Source: Photo courtesy of TransAlta

  • Aerial view of Drake Landing Solar Community<br/>Source: Wikimedia Commons/CA-BY-SA-3.0

    Drake Landing Solar Community opens near Okotoks, Alberta.

    Drake Landing is North American’s first fully integrated solar community. This award-winning initiative uses solar heating technology to provide the community with the majority of its space heating and hot water needs.
    Source: Wikimedia Commons/CA-BY-SA-3.0

  • AAdvanced Energy Research Facility, Edmonton, 2011LT<br/>Source: Photo Courtesy of Enerkem

    The City of Edmonton announces the launch of the ‘waste-to-biofuels’ project.

    The waste-to-biofuels project will convert garbage into biofuel by harvesting carbon from the waste material. The project includes an Advanced Energy Research Facility, which opened in 2012.
    Source: Photo Courtesy of Enerkem

Play Timeline

The Photovoltaic Effect and the Development of Solar Technology

By the turn of the nineteenth century, research into solar energy and the development of solar powered technology had focused on how to concentrate light with lenses and mirrors. This type of research had continued into the 1800s, with the development of solar-powered steam engines and water pumps. Alongside this older path of research, however, a new understanding of solar energy was emerging with the discovery of the photovoltaic effect—the generation of electrical currents in certain materials upon their exposure to light. It was this discovery that ultimately paved the way for a much larger-scale use of solar power.

In essence, the photovoltaic effect occurs when sunlight strikes certain types of material known as semiconductors—substances that are poor conductors of electricity in their natural state, but which become excellent conductors under particular conditions, such as exposure to heat or light. When sunlight strikes these materials (such as silicon, the most common semiconductor used in solar technology today), electrons are released and travel through the material, creating electricity. The photovoltaic effect was first observed in 1839 by a young French scientist, Edmond Becquerel, but it would be decades before the process was better understood and fully developed. The key turning point came in the 1870s when scientists discovered that selenium was a semiconductor, and would generate electricity if exposed to sunlight. This paved the way for the invention of the first selenium solar cell by American scientist Charles Fritts in 1883. The problem, however, was its utter lack of efficiency; Fritts estimated that his cell converted no more than 1%

of the light’s energy into electricity. Thus, while his invention represented an important scientific milestone, it did not generate enough electricity to make it practical or cost-effective. Scientists, including Albert Einstein, continued to study the photovoltaic effect, but the breakthrough that would translate this understanding into a viable source of electricity remained elusive.

Several major developments after the Second World War changed the course of solar energy research. The first was the discovery that silicon, one of the most common elements found on Earth, was an excellent semiconductor. The first solar panel made from silicon was built in 1954, and it converted 6% of the sunlight it received into electricity—much more efficient than the earlier selenium model, making it a workable source of energy. The second development was a tense mixture of science and international politics—the so-called Space Race between the United States and the Soviet Union, which began in earnest with the launch of the Soviet satellite Sputnik in 1957. Satellites and manned spacecraft required a source of power, and solar energy—available in great amounts in outer space—made the most sense (a trend that continues to this day with the International Space Station). This development was crucial because it ensured that research and development of solar technology would continue, no matter the financial cost through the 1950s and 1960s: in the highly charged political atmosphere of the Cold War, both sides viewed the cost of falling behind in science and technology as unacceptable.

Coal Conventional Oil Turner Valley Gas Plant Natural Gas Oil Sands Bitumount Electricity & Alternative Energy