Laying Gas Pipeline
Gas Mask, 1955
Tom Adams and Stan Jones
  • Gas Town of the West<br/> Source: Image courtesy of Peel’s Prairie Provinces, a digital initiative of the University of Alberta, PC010811

    Alberta’s first natural gas discovery in Langevin eventually leads to the designation of Medicine Hat as the “Gas Town of the West.”

    Gas Town of the West
    Source: Image courtesy of Peel’s Prairie Provinces, a digital initiative of the University of Alberta, PC010811

  • Gas well blowing at Bow Island, Alberta<br/> Source: Glenbow Archives, NA-4048-4

    At Bow Island, Alberta, the largest gas well drilled in Canada to date is directed by Eugene Coste, the “father of the natural gas industry.”

    Gas well blowing at Bow Island, Alberta
    Source: Glenbow Archives, NA-4048-4

  • Pipe for gas line, Bow Island area, Alberta, 1913 Source: Glenbow Archives, NA-4048-1

    Eugene Coste builds a 270-km (168-mi.) long pipeline, one of the longest and largest pipelines at that time, to carry Bow Island gas to Calgary and Lethbridge.

    Pipe for gas line, Bow Island area, Alberta, 1913
    Source: Glenbow Archives, NA-4048-1

  • Turner Valley Discovery Well Blowing, 1914<br/>Source: Provincial Archives of Alberta, P1883

    Natural gas wet with condensate is first discovered in the Cretaceous level at Turner Valley with the Dingman No. 1 well by Calgary Petroleum Products, the company originally founded by William Stewart Herron.

    Turner Valley Discovery Well Blowing, 1914
    Source: Provincial Archives of Alberta, P1883

  • Edmonton Gas Well, Viking, Alberta, ca. 1914<br/> Source: Glenbow Archives, NA-1328-66092

    Edmonton finds a natural gas supply in Viking, Alberta, but delays development due to war-related anxieties.

    Edmonton Gas Well, Viking, Alberta, ca. 1914
    Source: Glenbow Archives, NA-1328-66092

  • Original Royalite absorption, compression and scrubbing plant, ca. 1926<br/> Source: Provincial Archives of Alberta, P1882

    Royalite Oil Company Ltd., a wholly-owned subsidiary of Imperial Oil, gains entry to Turner Valley and begins an aggressive campaign to dominate petroleum production there.

    Original Royalite absorption, compression and scrubbing plant, ca. 1926
    Source: Provincial Archives of Alberta, P1882

  • Pipeline at MacDougall Avenue, Edmonton, Alberta, 1923<br/> Source: Glenbow Archives, ND-3-2062

    Edmonton, Alberta, receives its first delivery of natural gas from the Viking-Kinsella field that had been discovered in 1914.

    Pipeline at MacDougall Avenue, Edmonton, Alberta, 1923
    Source: Glenbow Archives, ND-3-2062

  • Burning Gas at Royalite No. 4, Hell’s Half Acre, Turner Valley, Alberta, 1924<br/> Source: Glenbow Archives, ND-8-430

    Royalite Oil punctures the gas condensate reservoir in the Mississippian rock formation at Turner Valley, and Royalite No. 4 erupts in fire.

    Burning Gas at Royalite No. 4, Hell’s Half Acre, Turner Valley, Alberta, 1924
    Source: Glenbow Archives, ND-8-430

  • In December 1929, Mackenzie King signs natural resources transfer agreement prior to the passage of legislation in 1930<br/> Source: Provincial Archives of Alberta, A10924

    The Canadian federal government transfers control of natural gas and other natural resources to the provincial Government of Alberta through the Natural Resources Transfer Acts of 1930.

    In December 1929, Mackenzie King signs natural resources transfer agreement prior to the passage of legislation in 1930.
    Source: Provincial Archives of Alberta, A10924

  • An Act for the Conservation of the Oil and Gas Resources of the Province of Alberta<br/> Source: <em>The Oil and Gas Conservation Act</em>, SA 1938, c. 15

    Oil and Gas Resources Conservation Act becomes law, and the Petroleum and Natural Gas Conservation Board, now the Energy Utilities Board, is formed as the regulatory authority for all gas and oil operations.

    An Act for the Conservation of the Oil and Gas Resources of the Province of Alberta
    Source: The Oil and Gas Conservation Act, SA 1938, c. 15

  • Shell Oil Jumping Pound Gas plant, 1952<br/> Source Provincial Archives of Alberta, P3009

    The largest gas reservoir in Canada at the time of discovery, the Jumping Pound field becomes a symbol of the need to resolve the stalemate over whether or not Alberta should export its natural gas; without adequate markets, it remains shut in until 1951.

    Shell Oil Jumping Pound Gas plant, 1952
    Source Provincial Archives of Alberta, P3009

  • But of course! Gas The Modern Fuel! In the years following World War II, the development and use of natural gas skyrockets due, in part, to rigorous marketing.<br/> Source: City of Edmonton Archives, EA-275-1776

    Efforts to promote natural gas as a safe, clean alternative to coal help the market expand rapidly, and large-scale processing and pipeline projects are constructed to serve the growing market.

    But of course! Gas The Modern Fuel! In the years following World War II, the development and use of natural gas skyrockets due, in part, to rigorous marketing.
    Source: City of Edmonton Archives, EA-275-1776

  • Handling sulfur at Madison natural gas facility, Turner Valley, 1952<br/> Source: Provincial Archives of Alberta, P2973

    In 1952, facilities in both Turner Valley and Jumping Pound begin to convert the toxic hydrogen sulfide in sour gas into benign elemental sulfur, and by the 1970s Canada becomes the largest exporter of sulfur in the world.

    Handling sulfur at Madison natural gas facility, Turner Valley, 1952
    Source: Provincial Archives of Alberta, P2973

  • <em>An Act to Incorporate a Gas Trunk Pipe Line Company to Gather and Transmit Gas within the Province</em><br/> Source: <em>The Alberta Gas Trunk Line Company Act</em>, SA 1954, c. 37

    Alberta Trunk Line Company is established in order to gather and transmit Alberta’s natural gas for domestic consumption as well as for export outside of the province.

    An Act to Incorporate a Gas Trunk Pipe Line Company to Gather and Transmit Gas within the Province
    Source: The Alberta Gas Trunk Line Company Act, SA 1954, c. 37

  • TransCanada Pipeline<br/> Source: Provincial Archives of Alberta, P1355

    TransCanada Pipeline exports the first gas piped to eastern Canada over a single pipeline, longer than any other single length of pipeline in North America at that time.

    TransCanada Pipeline
    Source: Provincial Archives of Alberta, P1355

  • Tom Adams (l) and Stan Jones (r)<br/> Source: Courtesy of Gwen Blatz

    Tom Adams and Stan Jones found the Meota Gas Co-operative, the first in what becomes a widespread movement to provide gas service throughout Alberta’s rural areas.

    Tom Adams (l) and Stan Jones (r)
    Source: Courtesy of Gwen Blatz

  • Just relax...we're just going to take a sample. November 14, 1980<br/> Source: Glenbow Archives, M-8000-710

    Prime Minister Trudeau introduces the national Energy Program (NEP), which sets prices for oil and gas well below international prices.

    “Just relax...we’re just going to take a sample.” November 14, 1980
    Source: Glenbow Archives, M-8000-710

  • Amoco sour gas blowout at Lodgepole near Drayton Valley, 1982<br/> Source: Provincial Archives of Alberta, J3747-1

    The Lodgepole sour gas blowout smells up the air for weeks, highlighting a growing conflict between the desire for economic development and the need to safeguard the public.

    Amoco sour gas blowout at Lodgepole near Drayton Valley, 1982
    Source: Provincial Archives of Alberta, J3747-1

  • Tied in coal bed methane (CBM) well, Ponoka, Alberta<br/> Source: Courtesy of Encana Corporation

    As conventional sources of natural gas have matured and declined, the industry has increasingly focused its efforts on developing unconventional gas resources such as shale gas, tight gas and coal bed methane.

    Tied in coal bed methane (CBM) well, Ponoka, Alberta
    Source: Courtesy of Encana Corporation

Play Timeline

Flaring

Perhaps the most distinctive feature of a natural gas processing facility is one or more vivid red and white striped flare stacks. The gas is carried up to the top of the long flare pipe to a burner tip, where it is ignited by a pilot light or an automatic igniter. Gas is flared in this way when it cannot be economically processed or sold. With little demand for its natural gas, Turner Valley flared approximately 90% of its supply, an amount that today would be worth billions of dollars.

Even after the consequences of flaring began to be understood and efforts to slow the practice began, flaring continued for several reasons. The most significant of these has to do with the sour quality of much of Alberta’s gas. Before the technology to transform the toxic hydrogen sulfide (H2S) into elemental sulfur became accessible, it

was flared to convert it into sulfur dioxide (SO2), which can be lifted into the atmosphere and dispersed.

The practice of flaring remained useful even after Alberta became the largest producer of elemental sulfur in the world. Flaring may be used as a safety mechanism to burn off gas during unexpected interruptions in production or processing such as equipment failure. Test flaring is conducted during the drilling of new wells in order to analyze exactly what a well is producing and how it will need to be processed. Flaring can also be used to eliminate any solution gas, gas that is contained within crude oil, that can’t itself be recovered and processed. This occurs especially when the solution gas is too minimal to warrant building the infrastructure necessary to transport it.

In the years since indiscriminate flaring made Turner Valley a winter haven, the general public, government and industry have become more aware of its environmental effects, which could contribute to possible health risks as well as to climate change. If complete combustion occurs at the burner tip, only water vapour and carbon dioxide, considered a greenhouse gas, are emitted. Incomplete combustion, however, can release carbon monoxide, unburned hydrocarbons, sulfur compounds, and particulates such as soot and ash. As a general practice, flaring is criticized also for creating unpleasant odors and noise,

which negatively impact the quality of life for those in proximity.

Crucial to the reduction of flaring in Alberta has been a combination of research, technological development, industry initiative, public pressure and government regulation. Between 1996 and 2010, such efforts resulted in a decrease by eighty percent of the amount of gas flared. Alberta has received international commendation for its successes in reducing natural gas flaring and has worked with neighbours British Columbia and Saskatchewan to develop guidelines to reduce flaring in those provinces as well.

Coal Conventional Oil Turner Valley Gas Plant Natural Gas Oil Sands Bitumount Electricity & Alternative Energy