An outcrop of the Athabasca Oil Sands deposit
A map of Alberta showing AOSTRA/petroleum industry pilot projects
A diagram of AOSTRA’s Underground Test Facility operations
  • Tar Sands, Athabasca River, Alberta, n.d. Source: Geological Survey of Canada/Library and Archives Canada, PA-038166

    The Geological Survey of Canada initiates exploration of the oil sands of the Athabasca region on the part of the federal government.

    Tar Sands, Athabasca River, Alberta, n.d.
    Source: Geological Survey of Canada/Library and Archives Canada, PA-038166

  • Drilling plant at Victoria, Alberta, 1898. Source: Glenbow Archives, NA-302-11

    Drilling in search of a basement reservoir of oil is the initial focus of development in Alberta’s oil sands.

    Drilling plant at Victoria, Alberta, 1898
    Source: Glenbow Archives, NA-302-11

  • Alfred von Hammerstein on horseback, ca. 1900. Source: Glenbow Archives, PA-3920-1

    Alfred von Hammerstein is the first independent entrepreneur to attempt to capitalize on the petroleum riches of the oil sands.

    Alfred von Hammerstein on horseback, ca. 1900
    Source: Glenbow Archives, PA-3920-1

  • Sidney Ells at Clearwater River tar sands plant, August 1931. Source: Canada. Dept. of Mines and Technical Surveys/Library and Archives Canada, PA-014454

    The federal government renews its investigation of the oil sands by sending Sidney Ells to Athabasca to conduct field and survey work.

    Sidney Ells at Clearwater River tar sands plant, August 1931
    Source: Canada. Dept. of Mines and Technical Surveys/Library and Archives Canada, PA-014454

  • View of demonstration experimental pavement laid in Edmonton, Alberta, 1915. Source: Provincial Archives of Alberta, A3399

    Throughout the 1920s, efforts to commercially develop the oil sands focused upon its possible use as a paving surface for roads and sidewalks.

    View of demonstration experimental pavement laid in Edmonton, Alberta, 1915
    Source: Provincial Archives of Alberta, A3399

  • Henry Marshall Tory, the first president of the University of Alberta, was instrumental in founding the Scientific and Industrial Research Council of Alberta, n.d. Source: University of Alberta Archives, 69-152-003

    The Scientific and Industrial Research Council of Alberta is founded.

    Henry Marshall Tory, the first president of the University of Alberta, was instrumental in founding the Scientific and Industrial Research Council of Alberta, n.d.
    Source: University of Alberta Archives, 69-152-003

  • Karl Clark and Sidney Blair built a model oil sands separation plant in the basement of the University of Alberta power plant. Source: University of Alberta Archives, 69-97-457

    Karl Clark builds his first model hot-water separation plant.

    Karl Clark and Sidney Blair built a model oil sands separation plant in the basement of the University of Alberta power plant.
    Source: University of Alberta Archives, 69-97-457

  • Absher’s set-up on Saline Creek, near Fort McMurray, 1929. Source: University of Alberta Archives, 77-128-27

    Jacob Absher attempts in situ extraction of oil from oil sands.

    Absher’s set-up on Saline Creek, near Fort McMurray, 1929
    Source: University of Alberta Archives, 77-128-27

  • Prospectus for the International Bitumen Company Ltd., n.d. Source: Provincial Archives of Alberta, PR1971.0356.544a,b.ProspectusOf.IBC.1

    Robert Fitzsimmons founds the International Bitumen Company Ltd.

    Prospectus for the International Bitumen Company Ltd., n.d.
    Source: Provincial Archives of Alberta, PR1971.0356.544a,b.ProspectusOf.IBC.1

  • Karl Clark’s third model plant is relocated to the Clearwater River. Sidney Ells is placed in charge of mining operations. Source: University of Alberta Archives, 77-128-13

    Federal and provincial governments cooperate to develop Clearwater River oil sands separation plant.

    Karl Clark’s third model plant is relocated to the Clearwater River. Sidney Ells is placed in charge of mining operations.
    Source: University of Alberta Archives, 77-128-13

  • Max Ball, ca. 1940. Source: University of Alberta Archives, 89-120-008

    Max Ball, J.M. McClave and B.O. Jones of Denver, Colorado, organize Abasand Oils Ltd.

    Max Ball, ca. 1940
    Source: University of Alberta Archives, 89-120-008

  • Abasand Oils Ltd. plant, ca. 1941. Source: Provincial Archives of Alberta, PR1985.0333.DevelopmentofAthabaska.O.S.DeskCopy.021 - detail

    Construction of Abasand Oils Ltd. oil sands separation plant on Horse River is completed.

    Abasand Oils Ltd. plant, ca. 1941
    Source: Provincial Archives of Alberta, PR1985.0333.DevelopmentofAthabaska.O.S.DeskCopy.021 - detail

  • Little was left of the Abasand plant after the fire. Source: University of Alberta, 84-25-132

    Abasand Oils Ltd. oil sands separation plant burns down.

    Little was left of the Abasand plant after the fire.
    Source: University of Alberta, 84-25-132

  • The completed Alberta Government Oil Sands Project plant, ca. 1950. Source: University of Alberta, 91-137-070 - detail

    Alberta Government Oil Sands Project Plant at Bitumount succeeds in separating crude oil from oil sands.

    The completed Alberta Government Oil Sands Project plant, ca. 1950
    Source: University of Alberta, 91-137-070 - detail

  • Cover of Sidney Blair’s Report on the Alberta Bituminous Sands commissioned by the Government of Alberta, 1950. Source: Provincial Archives of Alberta, PR1971.0345.box24.503

    Alberta government issues report on oil sands potential.

    Cover of Sidney Blair’s Report on the Alberta Bituminous Sands commissioned by the Government of Alberta, 1950
    Source: Provincial Archives of Alberta, PR1971.0345.box24.503

  • Sidney Kidder, Sidney Blair, George Hume, and Elmer Adkins (l to r) at the Edmonton portion of the Athabasca Oil Sands Conference at the University of Alberta, 1951. Source: Provincial Archives of Alberta, PA3152

    Athabasca Oil Sands Conference establishes an Alberta oil sands policy and stimulates commercial interest in the resource.

    Sidney Kidder, Sidney Blair, George Hume, and Elmer Adkins (l to r) at the Edmonton portion of the Athabasca Oil Sands Conference at the University of Alberta, 1951
    Source: Provincial Archives of Alberta, PA3152

  • Montreal-businessman Lloyd Champion incorporates Great Canadian Oil Sands Ltd. (GCOS) in 1953. Champion later sells most of his shares in the company before the GCOS plant opens under Sun Oil Company’s financing and leadership. Source: Courtesy of University of Alberta Archives, #83-160

    Great Canadian Oil Sands Ltd. incorporates.

    Montreal-businessman Lloyd Champion incorporates Great Canadian Oil Sands Ltd. (GCOS) in 1953. Champion, shown here ca. 1960s, later sells most of his shares in the company before the GCOS plant opens under Sun Oil Company’s financing and leadership.
    Source: University of Alberta Archives, #83-160

  • A cross-section of the Cold Lake area deposit shows the depth of the oil sands layer that makes the bitumen in this deposit recoverable only through in situ extraction methods. Source: Courtesy of Alberta Innovates

    Early in situ pilot tests begin on the Peace River and Cold Lake area oil sands deposits; underground experiments along the Cold Lake deposit lead to the development of the Cyclical Steam Stimulation (CCS) bitumen recovery method.

    A cross-section of the Cold Lake area deposit shows the depth of the oil sands layer that makes the bitumen in this deposit recoverable only through in situ extraction methods.
    Source: Courtesy of Alberta Innovates

  • Great Canadian Oil Sands Ltd. plant during its first week of operation, north of Fort McMurray, Alberta, 1967. Source: Courtesy of Suncor

    Great Canadian Oil Sands Ltd. begins production.

    Great Canadian Oil Sands Ltd. plant during its first week of operation, north of Fort McMurray, Alberta, 1967
    Source: Courtesy of Suncor

  • Canada’s Prime Minister Pierre Elliott Trudeau and Alberta Premier Peter Lougheed, November 1, 1977; Trudeau and Lougheed clash over oil sands ownership, export taxation and natural resource revenue sharing arrangements. Source: Provincial Archives of Alberta, J3672.2

    Global oil crisis heightens conflict between Alberta and Ottawa.

    Canada’s Prime Minister Pierre Elliott Trudeau and Alberta Premier Peter Lougheed, November 1, 1977; Trudeau and Lougheed clash over oil sands ownership, export taxation and natural resource revenue sharing arrangements.
    Source: Provincial Archives of Alberta, J3672.2

  • A map of Alberta shows AOSTRA/industry <em>in situ</em> pilot projects that emerge in the 1970s and 1980s.<br/> Source: Courtesy of Alberta Innovates

    Alberta Oil Sands Technology and Research Authority (AOSTRA) forms as a Crown corporation.

    A map of Alberta shows AOSTRA/industry in situ pilot projects that emerge in the 1970s and 1980s
    Source: Courtesy of Alberta Innovates

  • A news story published in the Winnipeg Tribune on February 4, 1975, reports the anticipated agreement that enables completion of the Syncrude consortium’s mega-project. Source: The Winnipeg Tribune

    Historic Winnipeg meeting between government and industry leads to agreement on Syncrude consortium mega-project.

    A news story published in the Winnipeg Tribune on February 4, 1975, reports the anticipated agreement that enables completion of the Syncrude consortium’s mega-project.
    Source: The Winnipeg Tribune

  • Syncrude operations near Mildred Lake north of Fort McMurray, late 1970s. Source: Courtesy of Syncrude Canada Ltd.

    Syncrude opens oil sands mining and bitumen upgrading mega-project in northeastern Alberta.

    Syncrude operations near Mildred Lake north of Fort McMurray, late 1970s
    Source: Courtesy of Syncrude Canada Ltd.

  • AOSTRA-sponsored technology develops through the late 1970s and early 1980s; the Cyclical Steam Stimulation (CCS) bitumen recovery process along the Peace River deposit injects steam through one well below the base of the oil sands atop the water-sand layer, resulting in a heat zone that mobilizes the overlying bitumen so that it can be pumped to the surface through a second production well. Source: Courtesy of Alberta Innovates

    Partnership between industry and the Alberta Oil Sands Technology and Research Authority (AOSTRA) leads to commercialization of in situ recovery methods.

    AOSTRA-sponsored technology develops through the late 1970s and early 1980s; the Cyclic Steam Stimulation bitumen recovery process injects steam through one well below the base of the oil sands, resulting in a heat zone that mobilizes the bitumen so that it can be pumped to the surface through a second production well.
    Source: Courtesy of Alberta Innovates

  • A diagram of AOSTRA’s Underground Test Facility operations. Source: Courtesy of Alberta Innovates

    Alberta Oil Sands Technology and Research Authority (AOSTRA) formally opens its Underground Test Facility to field test in situ oil sands mining theory including the industry-changing Steam-Assisted Gravity Drainage method (SAGD).

    A diagram of AOSTRA’s Underground Test Facility operations
    Source: Courtesy of Alberta Innovates

Play Timeline

In Situ Development

In the early 1980s, commercial in situ oil sands projects started to replace the AOSTRA-sponsored in situ extraction and refining pilot plants. Commercial development progressed from the test pilot plants for four main reasons. First, the industry had experienced technical successes with deep oil sands bitumen extraction at AOSTRA pilot projects. Second, relatively small-scale test plants were less of a financial risk and quicker to bring on stream than the earlier surface-mining mega-projects of the 1960s and 1970s. Those projects, Great Canadian Oil Sands and Syncrude, had huge costs associated with their development. Third, Alberta and the federal government had established economic encouragements for in situ research and development through AOSTRA and federal initiatives. Fourth, world oil prices were still high, which meant higher potential profits for petroleum industry companies willing to invest in in situ oil sand production. Together, these four factors led to a dramatic flurry of oil sands activity at Alberta’s in situ plants.

The three-part process of oil sands drilling, recording results, and map-making has helped define all of Alberta’s major oil sands areas, large and small.

As petroleum industry companies have drilled for oil and gas, geologists have used their findings to map and define important underground deposits. The 1961 description of the deposit surrounding Cold Lake in east central Alberta was largely a result of exploration by Imperial Oil. Similarly, when Shell drilled in the Peace River area between 1941 and 1947, the company’s efforts confirmed that bitumen was present in large volumes as a major deposit.

Shell, Imperial Oil and British Petroleum were the first companies to experiment in Alberta’s deeper oil sands. Each began in situ pilots in the 1960s. Encouraged by the creation and support of AOSTRA during the 1970s, other petroleum companies joined these frontrunners in setting up in situ oil sands projects. By the end of the decade in situ facilities dotted Alberta’s major oil sands deposits, with projects at the Cold Lake deposit at various locations, including Wolf Lake, Elk Point and Lindbergh. By 1992, around thirty in situ projects operated in Alberta. Together, they produced nearly 125,000 barrels of bitumen per day, or about 7.5% of Canadian oil production. In 2012, Alberta’s in situ production surpassed its mined oil sands production for the first time.

In this Section

Cold Lake

Vast bitumen resources exist in the area around Cold Lake at a depth of about 500 m (1,640 ft.) below ground.

Peace River

The Peace River area oil sands are third largest in the province.

Underground Test Facility

In situ processes were greatly advanced during the 1980s and 1990s.

Roger Butler and In Situ Development

Roger Butler was instrumental in making in situ bitumen recovery possible.

Coal Conventional Oil Turner Valley Gas Plant Natural Gas Oil Sands Bitumount Electricity & Alternative Energy