An outcrop of the Athabasca Oil Sands deposit
A map of Alberta showing AOSTRA/petroleum industry pilot projects
A diagram of AOSTRA’s Underground Test Facility operations
  • Tar Sands, Athabasca River, Alberta, n.d. Source: Geological Survey of Canada/Library and Archives Canada, PA-038166

    The Geological Survey of Canada initiates exploration of the oil sands of the Athabasca region on the part of the federal government.

    Tar Sands, Athabasca River, Alberta, n.d.
    Source: Geological Survey of Canada/Library and Archives Canada, PA-038166

  • Drilling plant at Victoria, Alberta, 1898. Source: Glenbow Archives, NA-302-11

    Drilling in search of a basement reservoir of oil is the initial focus of development in Alberta’s oil sands.

    Drilling plant at Victoria, Alberta, 1898
    Source: Glenbow Archives, NA-302-11

  • Alfred von Hammerstein on horseback, ca. 1900. Source: Glenbow Archives, PA-3920-1

    Alfred von Hammerstein is the first independent entrepreneur to attempt to capitalize on the petroleum riches of the oil sands.

    Alfred von Hammerstein on horseback, ca. 1900
    Source: Glenbow Archives, PA-3920-1

  • Sidney Ells at Clearwater River tar sands plant, August 1931. Source: Canada. Dept. of Mines and Technical Surveys/Library and Archives Canada, PA-014454

    The federal government renews its investigation of the oil sands by sending Sidney Ells to Athabasca to conduct field and survey work.

    Sidney Ells at Clearwater River tar sands plant, August 1931
    Source: Canada. Dept. of Mines and Technical Surveys/Library and Archives Canada, PA-014454

  • View of demonstration experimental pavement laid in Edmonton, Alberta, 1915. Source: Provincial Archives of Alberta, A3399

    Throughout the 1920s, efforts to commercially develop the oil sands focused upon its possible use as a paving surface for roads and sidewalks.

    View of demonstration experimental pavement laid in Edmonton, Alberta, 1915
    Source: Provincial Archives of Alberta, A3399

  • Henry Marshall Tory, the first president of the University of Alberta, was instrumental in founding the Scientific and Industrial Research Council of Alberta, n.d. Source: University of Alberta Archives, 69-152-003

    The Scientific and Industrial Research Council of Alberta is founded.

    Henry Marshall Tory, the first president of the University of Alberta, was instrumental in founding the Scientific and Industrial Research Council of Alberta, n.d.
    Source: University of Alberta Archives, 69-152-003

  • Karl Clark and Sidney Blair built a model oil sands separation plant in the basement of the University of Alberta power plant. Source: University of Alberta Archives, 69-97-457

    Karl Clark builds his first model hot-water separation plant.

    Karl Clark and Sidney Blair built a model oil sands separation plant in the basement of the University of Alberta power plant.
    Source: University of Alberta Archives, 69-97-457

  • Absher’s set-up on Saline Creek, near Fort McMurray, 1929. Source: University of Alberta Archives, 77-128-27

    Jacob Absher attempts in situ extraction of oil from oil sands.

    Absher’s set-up on Saline Creek, near Fort McMurray, 1929
    Source: University of Alberta Archives, 77-128-27

  • Prospectus for the International Bitumen Company Ltd., n.d. Source: Provincial Archives of Alberta, PR1971.0356.544a,b.ProspectusOf.IBC.1

    Robert Fitzsimmons founds the International Bitumen Company Ltd.

    Prospectus for the International Bitumen Company Ltd., n.d.
    Source: Provincial Archives of Alberta, PR1971.0356.544a,b.ProspectusOf.IBC.1

  • Karl Clark’s third model plant is relocated to the Clearwater River. Sidney Ells is placed in charge of mining operations. Source: University of Alberta Archives, 77-128-13

    Federal and provincial governments cooperate to develop Clearwater River oil sands separation plant.

    Karl Clark’s third model plant is relocated to the Clearwater River. Sidney Ells is placed in charge of mining operations.
    Source: University of Alberta Archives, 77-128-13

  • Max Ball, ca. 1940. Source: University of Alberta Archives, 89-120-008

    Max Ball, J.M. McClave and B.O. Jones of Denver, Colorado, organize Abasand Oils Ltd.

    Max Ball, ca. 1940
    Source: University of Alberta Archives, 89-120-008

  • Abasand Oils Ltd. plant, ca. 1941. Source: Provincial Archives of Alberta, PR1985.0333.DevelopmentofAthabaska.O.S.DeskCopy.021 - detail

    Construction of Abasand Oils Ltd. oil sands separation plant on Horse River is completed.

    Abasand Oils Ltd. plant, ca. 1941
    Source: Provincial Archives of Alberta, PR1985.0333.DevelopmentofAthabaska.O.S.DeskCopy.021 - detail

  • Little was left of the Abasand plant after the fire. Source: University of Alberta, 84-25-132

    Abasand Oils Ltd. oil sands separation plant burns down.

    Little was left of the Abasand plant after the fire.
    Source: University of Alberta, 84-25-132

  • The completed Alberta Government Oil Sands Project plant, ca. 1950. Source: University of Alberta, 91-137-070 - detail

    Alberta Government Oil Sands Project Plant at Bitumount succeeds in separating crude oil from oil sands.

    The completed Alberta Government Oil Sands Project plant, ca. 1950
    Source: University of Alberta, 91-137-070 - detail

  • Cover of Sidney Blair’s Report on the Alberta Bituminous Sands commissioned by the Government of Alberta, 1950. Source: Provincial Archives of Alberta, PR1971.0345.box24.503

    Alberta government issues report on oil sands potential.

    Cover of Sidney Blair’s Report on the Alberta Bituminous Sands commissioned by the Government of Alberta, 1950
    Source: Provincial Archives of Alberta, PR1971.0345.box24.503

  • Sidney Kidder, Sidney Blair, George Hume, and Elmer Adkins (l to r) at the Edmonton portion of the Athabasca Oil Sands Conference at the University of Alberta, 1951. Source: Provincial Archives of Alberta, PA3152

    Athabasca Oil Sands Conference establishes an Alberta oil sands policy and stimulates commercial interest in the resource.

    Sidney Kidder, Sidney Blair, George Hume, and Elmer Adkins (l to r) at the Edmonton portion of the Athabasca Oil Sands Conference at the University of Alberta, 1951
    Source: Provincial Archives of Alberta, PA3152

  • Montreal-businessman Lloyd Champion incorporates Great Canadian Oil Sands Ltd. (GCOS) in 1953. Champion later sells most of his shares in the company before the GCOS plant opens under Sun Oil Company’s financing and leadership. Source: Courtesy of University of Alberta Archives, #83-160

    Great Canadian Oil Sands Ltd. incorporates.

    Montreal-businessman Lloyd Champion incorporates Great Canadian Oil Sands Ltd. (GCOS) in 1953. Champion, shown here ca. 1960s, later sells most of his shares in the company before the GCOS plant opens under Sun Oil Company’s financing and leadership.
    Source: University of Alberta Archives, #83-160

  • A cross-section of the Cold Lake area deposit shows the depth of the oil sands layer that makes the bitumen in this deposit recoverable only through in situ extraction methods. Source: Courtesy of Alberta Innovates

    Early in situ pilot tests begin on the Peace River and Cold Lake area oil sands deposits; underground experiments along the Cold Lake deposit lead to the development of the Cyclical Steam Stimulation (CCS) bitumen recovery method.

    A cross-section of the Cold Lake area deposit shows the depth of the oil sands layer that makes the bitumen in this deposit recoverable only through in situ extraction methods.
    Source: Courtesy of Alberta Innovates

  • Great Canadian Oil Sands Ltd. plant during its first week of operation, north of Fort McMurray, Alberta, 1967. Source: Courtesy of Suncor

    Great Canadian Oil Sands Ltd. begins production.

    Great Canadian Oil Sands Ltd. plant during its first week of operation, north of Fort McMurray, Alberta, 1967
    Source: Courtesy of Suncor

  • Canada’s Prime Minister Pierre Elliott Trudeau and Alberta Premier Peter Lougheed, November 1, 1977; Trudeau and Lougheed clash over oil sands ownership, export taxation and natural resource revenue sharing arrangements. Source: Provincial Archives of Alberta, J3672.2

    Global oil crisis heightens conflict between Alberta and Ottawa.

    Canada’s Prime Minister Pierre Elliott Trudeau and Alberta Premier Peter Lougheed, November 1, 1977; Trudeau and Lougheed clash over oil sands ownership, export taxation and natural resource revenue sharing arrangements.
    Source: Provincial Archives of Alberta, J3672.2

  • A map of Alberta shows AOSTRA/industry <em>in situ</em> pilot projects that emerge in the 1970s and 1980s.<br/> Source: Courtesy of Alberta Innovates

    Alberta Oil Sands Technology and Research Authority (AOSTRA) forms as a Crown corporation.

    A map of Alberta shows AOSTRA/industry in situ pilot projects that emerge in the 1970s and 1980s
    Source: Courtesy of Alberta Innovates

  • A news story published in the Winnipeg Tribune on February 4, 1975, reports the anticipated agreement that enables completion of the Syncrude consortium’s mega-project. Source: The Winnipeg Tribune

    Historic Winnipeg meeting between government and industry leads to agreement on Syncrude consortium mega-project.

    A news story published in the Winnipeg Tribune on February 4, 1975, reports the anticipated agreement that enables completion of the Syncrude consortium’s mega-project.
    Source: The Winnipeg Tribune

  • Syncrude operations near Mildred Lake north of Fort McMurray, late 1970s. Source: Courtesy of Syncrude Canada Ltd.

    Syncrude opens oil sands mining and bitumen upgrading mega-project in northeastern Alberta.

    Syncrude operations near Mildred Lake north of Fort McMurray, late 1970s
    Source: Courtesy of Syncrude Canada Ltd.

  • AOSTRA-sponsored technology develops through the late 1970s and early 1980s; the Cyclical Steam Stimulation (CCS) bitumen recovery process along the Peace River deposit injects steam through one well below the base of the oil sands atop the water-sand layer, resulting in a heat zone that mobilizes the overlying bitumen so that it can be pumped to the surface through a second production well. Source: Courtesy of Alberta Innovates

    Partnership between industry and the Alberta Oil Sands Technology and Research Authority (AOSTRA) leads to commercialization of in situ recovery methods.

    AOSTRA-sponsored technology develops through the late 1970s and early 1980s; the Cyclic Steam Stimulation bitumen recovery process injects steam through one well below the base of the oil sands, resulting in a heat zone that mobilizes the bitumen so that it can be pumped to the surface through a second production well.
    Source: Courtesy of Alberta Innovates

  • A diagram of AOSTRA’s Underground Test Facility operations. Source: Courtesy of Alberta Innovates

    Alberta Oil Sands Technology and Research Authority (AOSTRA) formally opens its Underground Test Facility to field test in situ oil sands mining theory including the industry-changing Steam-Assisted Gravity Drainage method (SAGD).

    A diagram of AOSTRA’s Underground Test Facility operations
    Source: Courtesy of Alberta Innovates

Play Timeline

Underground Developments

For nearly a century, the focus of oil sands development was on surface operations exploiting bitumen in the Athabasca region. In the earliest days, oil was scooped up from surface seeps. As the industry evolved, ever-larger projects mined oil sands—a mixture of sand, water and bitumen—from open-pit mines and put it through a process that extracted commercial products like bitumen and sulfur. While such surface operations can extract more than 90% of the oil from the oil sands, they present environmental challenges, resulting in habitat loss and the release of effluents and emissions.

While surface operations were underway, a parallel oil sands industry experimented with ways to recover bitumen from even deeper deposits. The only way to successfully develop bitumen resources buried far below the Earth’s surface is through in situ production. In situ is Latin for “in place.” In the context of Alberta’s oil sands, it refers to oil recovery techniques that apply heat, solvents or other chemicals to deposits far below the Earth’s surface. One of the

merits of in situ production is that it opens up huge volumes of the oil sands for commercial development. Another is that it results in less interference with the surface landscape, although environmental impacts do remain.

Experimentation with underground thermal techniques did not intensify until the industry began to map Alberta’s deeper oil sands reservoirs, and that information came slowly. Although the presence of bitumen in Alberta has long been known, especially around Fort McMurray and in the Peace River area, it took conventional oil exploration, which surged after the Leduc conventional oil discovery of 1947, to truly start defining Alberta’s major oil sands deposits.

Exploration and mapping of Alberta’s deeper oil sands stimulated in situ pilot experiments in Alberta’s deeper oil sands in the 1960s. An agency established in 1974, the Alberta Oil Sands Technology and Research Authority (AOSTRA), leant support to these operations, and by 1980 a number of in situ pilot projects had appeared along the province’s major buried bituminous oil sands deposits. Surface mining continued but, as 80% of Alberta’s proven reserves are inaccessible from the surface, so, too, did in situ development.

In this Section

Energy Wars

A series of “energy wars” between oil producing provinces and Canada’s federal government developed during Peter Lougheed’s Alberta premiership in the 1970s and early 1980s.

In Situ Development

In the early 1980s, commercial in situ oil sands projects started to replace the AOSTRA-sponsored in situ extraction and refining pilot plants.

Coal Conventional Oil Turner Valley Gas Plant Natural Gas Oil Sands Bitumount Electricity & Alternative Energy